Ubiquitination Is Required for Effective Replication of Coxsackievirus B3

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitination Is Required for Effective Replication of Coxsackievirus B3

BACKGROUND Protein ubiquitination and/or degradation by the ubiquitin/proteasome system (UPS) have been recognized as critical mechanisms in the regulation of numerous essential cellular functions. The importance of the UPS in viral pathogenesis has become increasingly apparent. Using murine cardiomyocytes, we have previously demonstrated that the UPS plays a key role in the replication of coxs...

متن کامل

Amiloride derivatives inhibit coxsackievirus B3 RNA replication.

Amiloride derivatives are known blockers of the cellular Na(+)/H(+) exchanger and the epithelial Na(+) channel. More recent studies demonstrate that they also inhibit ion channels formed by a number of viral proteins. We previously reported that 5-(N-ethyl-N-isopropyl)amiloride (EIPA) modestly inhibits intracellular replication and, to a larger extent, release of human rhinovirus 2 (HRV2) (E. V...

متن کامل

Effect of Activation and Inhibition of Cellular PKR on Coxsackievirus B3 Replication

The ds-RNA activated protein kinase (PKR) is a serine-threonine kinase with MW of 68 KDa. It belongs to a family of kinases that control one of the translational initiation factors, eIF2. PKR is produced at high level in response to viral infection. This protein by phosphorylating eIF2 inhibits cellular protein synthesis. In this study, the effect of gamma interferon (IFN-γ), an activator, and ...

متن کامل

Domain I of the 5' non-translated genomic region in coxsackievirus B3 RNA is not required for productive replication.

Domain I is a cloverleaf-like secondary structure at the 5' termini of all enterovirus genomes, comprising part of a cis-acting replication element essential for efficient enteroviral replication. 5' genomic terminal deletions up to as much as 55% of domain I can occur without lethality following coxsackie B virus infections. We report here that the entire CVB structural domain I can be deleted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The FASEB Journal

سال: 2006

ISSN: 0892-6638,1530-6860

DOI: 10.1096/fasebj.20.4.a644-b